Superficial dermal fibroblasts enhance basement membrane and epidermal barrier formation in tissue-engineered skin: implications for treatment of skin basement membrane disorders.

نویسندگان

  • Mathew Varkey
  • Jie Ding
  • Edward E Tredget
چکیده

Basement membrane is a highly specialized structure that binds the dermis and the epidermis of the skin, and is mainly composed of laminins, nidogen, collagen types IV and VII, and the proteoglycans, collagen type XVIII and perlecan, all of which play critical roles in the function and resilience of skin. Both dermal fibroblasts and epidermal keratinocytes contribute to the development of the basement membrane, and in turn the basement membrane and underlying dermis influence the development and function of the epidermal barrier. Disruption of the basement membrane results in skin fragility, extensive painful blistering, and severe recurring wounds as seen in skin basement membrane disorders such as epidermolysis bullosa, a family of life-threatening congenital skin disorders. Currently, there are no successful strategies for treatment of these disorders; we propose the use of tissue-engineered skin as a promising approach for effective wound coverage and to enhance healing. Fibroblasts and keratinocytes isolated from superficial and deep dermis and epidermis, respectively, of tissue from abdominoplasty patients were independently cocultured on collagen-glycosaminoglycan matrices, and the resulting tissue-engineered skin was assessed for functional differences based on the underlying specific dermal fibroblast subpopulation. Tissue-engineered skin with superficial fibroblasts and keratinocytes formed a continuous epidermis with increased epidermal barrier function and expressed higher levels of epidermal proteins, keratin-5, and E-cadherin, compared to that with deep fibroblasts and keratinocytes, which had an intermittent epidermis. Further, tissue-engineered skin with superficial fibroblasts and keratinocytes formed better basement membrane, and produced more laminin-5, nidogen, collagen type VII, compared to that with deep fibroblasts and keratinocytes. Overall, our results demonstrate that tissue-engineered skin with superficial fibroblasts and keratinocytes forms significantly better basement membrane with higher expression of dermo-epidermal adhesive and anchoring proteins, and superior epidermis with enhanced barrier function compared to that with deep fibroblasts and keratinocytes, or with superficial fibroblasts, deep fibroblasts, and keratinocytes. The specific use of superficial fibroblasts in tissue-engineered skin may thus be more beneficial to promote adhesion of newly formed skin and wound healing, and is therefore promising for the treatment of patients with basement membrane disorders and other skin blistering diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication, quality assurance, and assessment of cultured skin substitutes for treatment of skin wounds

Advances in treatment of skin wounds depend on demonstration of reduced morbidity or mortality either during or after hospitalization. Tissue engineering of skin grafts from cultured cells and biopolymers permits greater amounts of grafts from less donor tissue than conventional procedures. Autologous keratinocytes and fibroblasts isolated from epidermis and dermis of skin may be combined with ...

متن کامل

Improved epidermal barrier formation in human skin models by chitosan modulated dermal matrices

Full thickness human skin models (FTMs) contain an epidermal and a dermal equivalent. The latter is composed of a collagen dermal matrix which harbours fibroblasts. Current epidermal barrier properties of FTMs do not fully resemble that of native human skin (NHS), which makes these human skin models less suitable for barrier related studies. To further enhance the resemblance of NHS for epiderm...

متن کامل

Advances in Skin Substitutes—Potential of Tissue Engineered Skin for Facilitating Anti-Fibrotic Healing

Skin protects the body from exogenous substances and functions as a barrier to fluid loss and trauma. The skin comprises of epidermal, dermal and hypodermal layers, which mainly contain keratinocytes, fibroblasts and adipocytes, respectively, typically embedded on extracellular matrix made up of glycosaminoglycans and fibrous proteins. When the integrity of skin is compromised due to injury as ...

متن کامل

Topical Application of Honey for Treatment of Skin Wound in Mice

Background:Honey has been shown to accelerate wound healing, which is especially important in the management of patients with full-thickness wounds of skin in dermatologic surgeries. Objective: To evaluate the effects of honey in accelerating healing of full-thickness skin wounds in mice. Methods: Two groups of male NMRI mice (n=12) were subjected to full-thickness skin wounds under general ane...

متن کامل

Identification of the cutaneous basement membrane zone antigen and isolation of antibody in linear immunoglobulin A bullous dermatosis.

Linear IgA bullous dermatosis (LABD) is a rare blistering skin disease characterized by basement membrane zone deposition of IgA. This study identifies a tissue antigen detected by patient serum and then isolates the autoantibody using epidermis and protein bands blotted on nitrocellulose as immunoabsorbents. Sera from 10 patients (9 with cutaneous disease and 1 with cicatrizing conjunctivitis)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 20 3-4  شماره 

صفحات  -

تاریخ انتشار 2014